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1   |   INTRODUCTION

Over the last century, conventional agricultural prac-
tices, including synthetic fertilization of nitrogen (N), till-
age, and the use of chemical herbicides, have benefited 

humanity by drastically improving agricultural productiv-
ity, but at a significant cost to soil and ecosystem health 
(Chen et al., 2014; Rockström et al., 2009). For example, 
agricultural intensification and mismanagement of fer-
tilizer application have led to soil acidification, decreased 
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Abstract
The need for sustainable agricultural practices to meet the food, feed, and fuel de-
mands of a growing global population while reducing detrimental environmental 
impacts has driven research in multi-faceted approaches to agricultural sustain-
ability. Perennial cropping systems and microbial biofertilizer supplements are 
two emerging strategies to increase agricultural sustainability that are studied in 
tandem for the first time in this study. During the establishment phase of a peren-
nial switchgrass stand in SW Montana, USA, we supplemented synthetic fertili-
zation with a nitrogen-fixing cyanobacterial biofertilizer (CBF) and were able to 
maintain aboveground crop productivity in comparison to a synthetic only (urea) 
fertilizer treatment. Soil chemical analysis conducted at the end of the growing 
season revealed that late-season nitrogen availability in CBF-supplemented field 
plots increased relative to urea-only plots. High-throughput sequencing of bacte-
rial/archaeal and fungal communities suggested fine-scale responses of the mi-
crobial community and sensitivity to fertilization among arbuscular mycorrhizal 
fungi, Planctomycetes, Proteobacteria, and Actinobacteria. Given their critical 
role in plant productivity and soil nutrient cycling, soil microbiome monitoring 
is vital to understand the impacts of implementation of alternative agricultural 
practices on soil health.
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soil organic carbon (SOC), nutrient loss through leaching 
and gaseous emission, and declines in microbial diver-
sity and functioning (Barak et al., 1997; Tian et al., 2020; 
Tsiafouli et al., 2015). The degradation of soil microbial 
communities in particular has become an increasing con-
cern as microbes including bacteria, archaea, and fungi 
are critical regulators of soil organic matter dynamics, 
nutrient availability, and subsequent crop productivity 
(Saleem et al., 2019; Singh et al., 2020; van der Heijden 
et al., 2008; Wagg et al., 2014). To mitigate or reverse these 
effects, the expansion in both research and practice of 
sustainable cropping systems has become a focus to ad-
dress negative environmental impacts while meeting, or 
surpassing, conventional cropping system yields (Hobbs 
et al., 2008). The use of perennial cropping systems and 
the use of microbial biofertilizers as supplements to syn-
thetic fertilizers are two emerging strategies to address the 
negative impacts of agriculture on the environment, and 
specifically the mismanagement of nitrogen (N) fertilizer 
(Robertson & Vitousek, 2009). These approaches provide 
multiple key ecosystem services (improved C cycling and 
microbial diversity, reduced nutrient loss) in comparison 
to conventional agricultural practices (Jesus et al., 2016; 
Robertson & Vitousek, 2009; Werling et al., 2014), and 
in combination could result in dramatically improved 
sustainability.

Perennial crop cultivation has increased significantly 
in the United States in recent years, particularly in the 
use of switchgrass (Panicum virgatum) for cellulosic 
bioenergy production (Mitchell et al., 2008; Robertson 
et al., 2017; Wright & Turhollow, 2010). Switchgrass 
cropping systems may also play an integral role with 
emerging climate-smart technologies such as bioen-
ergy with carbon capture and storage (BECCS) because 
deep-rooting perennial plants transfer large amounts of 
carbon belowground (Jarchow et al., 2015; Stoy et al., 
2018). While it remains unlikely that any single species 
will become a universal feedstock for bioenergy pro-
duction (Jessup, 2009), perennial grasses have many 
environmental advantages (enhanced biodiversity, pest 
suppression, and pollination) compared to annual spe-
cies (de Oliveira et al., 2018; Fazio & Monti, 2011; Lai 
et al., 2018; Pugesgaard et al., 2015; Werling et al., 2014). 
Furthermore, there is high economic potential for some 
perennial bioenergy crops (Adler et al., 2007; Wright & 
Turhollow, 2010), and although spatial and temporal 
variations in yield can be high (Schmer et al., 2009), 
consideration of regional biophysical factors during spe-
cies selection can help optimize production. However, 
the net benefits of conversion to perennial bioenergy 
systems depend largely on the retention of ecosystem 
carbon (C) and N (Robertson et al., 2011; Robertson & 
Vitousek, 2009). While perennial grass systems tend to 

accumulate soil organic carbon (SOC) when converted 
from annual-based systems (Lemus & Lal, 2005; Liebig 
et al., 2008), variability in SOC accrual has been doc-
umented across agroecosystems (Ye & Hall, 2019). In 
modeling scenarios developed by Dolan et al. (2020), 
future climate projections indicated that much of the 
Upper Missouri River Basin (UMRB) of North America 
has high potential for second-generation bioenergy pro-
duction. However, the productivity of switchgrass, a 
C4 species adapted to warm climate regions (Sanderson 
et al., 2006), has not been rigorously documented in field 
experiments across agricultural regions of the semi-arid 
UMRB. Given the extent of marginal land and relatively 
low quality of soils across the UMRB, the ecosystem 
services provided by perennial cropping systems could 
be highly beneficial (Emery et al., 2017; Gelfand et al., 
2013). As in all bioenergy cropping systems, nutrient, 
and specifically N, loss in annually harvested biomass 
must be matched with appropriate annual inputs. Thus, 
combining a perennial cropping system with a biofer-
tilizer might offer a sustainable approach to replacing 
annual N loss (from harvest) through the input of an 
initially less reactive form of N that is not as likely to be 
lost quickly from volatilization or leaching.

Biofertilizers are inoculants of living microorgan-
isms applied to plants or soil to support plant growth by 
increasing nutrient availability (Bhattacharjee & Dey, 
2014; Pellegrino et al., 2015). N-fixing cyanobacteria are 
gram-negative bacteria that often exhibit filamentous 
growth and are widespread in soil and aquatic habitats, 
and that have been used as biofertilizers for many years 
in rice paddy operations (Alvarez et al., 2021; De, 1939; 
Prasanna et al., 2015). They also can promote the growth 
of a wide variety of terrestrial crops with additional ben-
efits to soil quality (Nain et al., 2010; Swarnalakshmi 
et al., 2013; Watanabe et al., 1979). Cyanobacterial-based 
biofertilizers (CBF) have been shown to (1) maintain 
plant productivity when used as a supplement to replace 
25%–50% synthetic NPK fertilizer (Chittapun et al., 2018; 
El-Beltagy et al., 2016), (2) increase SOC through pho-
tosynthesis and biomass turnover (Yilmaz & Sonmez, 
2017), (3) decrease soil erosion through the production 
of exopolysaccharides (Falchini et al., 1996; Malam Issa 
et al., 2006), and (4) increase a variety of soil enzymatic 
activities (Nisha et al., 2018). In addition, when com-
pared to synthetic fertilizers, CBF provides a more grad-
ual release of nutrients to the soil which can benefit crop 
growth and quality (Coppens et al., 2016; Mulbry et al., 
2007). In contrast, there is ample evidence that urea ap-
plication, which accounts for >55% of global N produc-
tion and is the most dominant crop N fertilizer (FAO, 
2019), is susceptible to large losses of ammonia (Pan et al., 
2016) and nitrous oxide (Bouwman et al., 2002) to the 
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atmosphere and nitrate to groundwater (Di & Cameron, 
2002). In regards to soil N dynamics in bioenergy crop-
ping systems, if fertilization of N is managed to match 
crop needs (Ruan et al., 2016), perennial systems have a 
greater potential for N retention in comparison to annual 
crops via reduced loss of nutrients through leaching, 
runoff, and greenhouse gas flux coupled with increased 
N use efficiency (Culman et al., 2013; Liebig et al., 2008). 
While the reported benefits of CBF are numerous, the 
effects of CBF on the soil microbial community and nu-
trient cycling in field studies remain a large knowledge 
gap. The vital roles soil microbes play in decomposition 
and nutrient cycling make understanding the impact of 
biofertilizers on native soil microbial communities criti-
cal to their successful implementation in sustainable ag-
ricultural systems.

Together, perennial bioenergy crops and biofertiliza-
tion could significantly promote agricultural sustainability 
by improving nutrient retention and microbially mediated 
ecosystem processes. To our knowledge, this is the first 
study to investigate these strategies in tandem. The goal of 
this study was to analyze aboveground and belowground 
treatment effects of CBF on perennial crop establishment, 
soil microbial community diversity, N availability, and 
SOC in a field-based, randomized plot experiment. We 
hypothesized that (1) supplementing synthetic fertilizer 
with CBF would maintain aboveground biomass produc-
tion compared to synthetic fertilization alone and that 
the slower mineralization rate of CBF would benefit late-
season crop productivity, (2) CBF supplementation would 
prolong N availability, and (3) CBF supplementation 
would benefit microbial diversity compared to synthetic 
fertilization alone and response to fertilization would be 
phylogenetically conserved in bacterial/archaeal and fun-
gal communities.

To test these hypotheses, we compared aboveground 
and belowground responses of switchgrass field plots 
treated with synthetic urea fertilizer, a mixture of urea 
and CBF, or untreated (controls). As perennial grasses 
often take a year to establish and can suffer from weed 
competition in the early establishment phases, barley 
was intercropped to outcompete weeds and served as an 
early indicator of fertilizer effects, as barley has a higher 
N demand than switchgrass (Ball & O'Sullivan, 1987; 
Lemus et al., 2008). To preserve the switchgrass stand in-
tegrity during establishment, we measured aboveground 
productivity non-destructively using the Normalized 
Difference Vegetation Index (NDVI) as a proxy for abo-
veground biomass (Garroutte et al., 2016). Soil chemistry 
and microbial diversity using high-throughput sequenc-
ing were measured throughout the growing season to 
determine the chemical and biological effects of CBF 
implementation.

2   |   MATERIALS AND METHODS

2.1  |  Site description and experimental 
design

Field plots are located at the Montana State University 
(MSU) Arthur H. Post Research Farm (45.66  N, 
−111.15  W) located 10  km west of Bozeman at 1450  m 
elevation where mean annual temperature and precipita-
tion are 6.5°C and 408 mm year−1 (Figure S1). The soil at 
the Post Farm is broadly classified as an Amsterdam silt 
loam which is a fine-silty, mixed, superactive, frigid Typic 
Haplustoll (100 g kg−1 clay, 810 g kg−1 silt, 90 g kg−1 sand; 
Engel et al., 2017). The preceding crop was Proso mil-
let (Panicum milaceum) which was fertilized with 67 kg 
N ha−1 urea in spring 2017. Barley (Hordeum vulgare, 
Hayse forage variety) and switchgrass (Panicum virgatum, 
Dakota variety) were seeded on April 16, 2018 at 16  kg 
ha−1 with a no-till disk seeder. Three treatments were 
established across replicated (n  =  5) 3.34  m2 plots: (1) 
100 kg N ha−1 urea (urea), (2) 100 kg N ha−1 50:50 CBF/
urea mix (CBF:Urea), and (3) control plots that received 
no experimental N addition (control). To minimize edge 
effects, the plots were arranged in a randomized block 
design with buffer alleyways (1.2 m) between replication 
rows that were seeded but left untreated (Figure S2). We 
elected to supplement the synthetic fertilizer with a half-
dose of CBF as recent literature found replacing 50% of 
the synthetic fertilizer application with CBF resulted in 
the greatest yields of various crops compared to synthetic 
fertilizer alone (Chittapun et al., 2018; Naher, 2018; Nain 
et al., 2010). Notably, we were limited by production ca-
pacity to expand the field plot treatments to include a 
CBF-only treatment to separate CBF effects from urea ef-
fects. However, this design allowed us to build off of the 
existing literature and study CBF in a practical manner 
similar to what producers would typically utilize (Naher, 
2018). Fertilizer application timing was based off com-
mon regional application practice for urea and was ap-
plied on April 22nd 2018 (Jacobsen et al., 2005). Urea plots 
were hand-spread and received all 100 kg ha−1 in April, 
whereas CBF:Urea plots only received 50  kg ha−1. The 
remaining 50 kg ha−1 of CBF were split into five applica-
tion periods (June 2, June 15, June 28, July 12, and August 
09) applied in 10 kg ha−1 increments explained in detail 
below. Supplemental sprinkler irrigation (n = 4 events), 
totaling ~112 mm of precipitation equivalent, was applied 
after fertilization applications to all plots. This was done 
to help the biofertilizer infiltrate below the soil surface 
when natural precipitation events were lacking. Due to 
cost constraints, soil chemistry and microbial community 
results are reported from a subset of 3 out of the 5 treat-
ment replicates.



      |  1911GOEMANN et al.

2.2  |  CBF cultivation

From previous screening of several cultured representa-
tives of N-fixing cyanobacterial species, we selected 
Anabaena cylindrica (UTEX 1611) for use as CBF as we 
verified that it grows robustly in liquid media, has a rel-
atively high N fixation rate in liquid culture, and does 
not produce any known cyanotoxins (Weeks, 2013). 
Elemental analysis was conducted on an EA Flash 2000 
and indicated that CBF biomass contained 9% N, 1% P, 1% 
K, and 50% C. For each application period, we cultivated 
a total of 800  L liquid culture using 3  ×  200  L raceway 
ponds and 4 × 50 L bag reactors (Figure 1). At the time 
of harvest, bags and raceways were pumped into conical 
tanks to gravity settle overnight before harvesting the con-
centrated biomass. Dry biomass weights (in mg/L) were 
measured in triplicate by vacuuming the concentrated 
culture onto 0.2 μM filters and drying overnight at 60°C. 
Dry weights were used to calculate the volume of culture 
to be applied to each plot. CBF was cultured for 2 weeks 
prior to harvesting, resulting in five CBF applications over 
the growing season. Due to limited production capacity, 
living CBF biomass was supplemented with commercially 
available, dried Spirulina (Arthrospira platensis) biomass 
(10% N, 1% P, 1% K) at a final biomass ratio of 20:80 A. 
cylindrica:Spirulina to meet the goal of 50% CBF-derived 
N for the CBF:Urea supplement treatment. The multiple 
smaller applications and mixture with Spirulina were nec-
essary due to limitations in culture volume of A. cylindrica.

2.3  |  Sampling and analyses

Crop productivity and growth were monitored in situ 
using a novel remote sensing device (Arable, USA) de-
signed to measure a suite of crop management indices 
including hourly spectrometer data. A wide variety of 
vegetation indices are used to assess vegetation/crop sta-
tus via remote sensing devices metrics. Here, we use the 
Normalized Difference Vegetation Index (NDVI), one of 
the most widely used vegetation index, that has been cor-
related to aboveground biomass, canopy area, and leaf N 

content (Cabrera-Bosquet et al., 2011; Teal et al., 2006; 
Tucker, 1979), where NDVI = (NIR − red)/(NIR + red) 
and NIR is the fraction of near-infrared radiation that is 
emitted back to the sensor and red is the fraction of red 
radiation emitted back to the sensor. The index reports 
values from −1 to 1 and generally represent the vegeta-
tive greenness within the spectrometer's footprint. Arable 
Mark devices were installed directly following seeding on 
April 26, 2018. Arable Marks were mounted on 2 m tall 
steel posts (7.5  cm diameter) in the center of each plot, 
installed at 1 m above maximum crop height, and stayed 
in place for the duration of the growing season (Figure 
S3). In all, six Arable Marks were deployed for the study 
across two randomly selected plots from each treatment. 
The raw mean daily NDVI values from each Arable sensor 
were aggregated by month to test for statistical differences 
between treatments across the growing season. Barley bio-
mass was harvested July 23, 2018 at peak forage biomass 
by shearing 10 cm above ground surface in 1 m2 blocks 
at the center of each plot. The biomass was air-dried for 
1 week at 40°C and subsequently weighed as dry biomass.

Field plots were sampled prior to seeding in April 2018 
to establish background soil conditions and then monthly 
to capture temporal and compositional variance in the soil 
microbial community and shifts in N availability. Due to 
the small area of individual plots, one fixed-depth soil core 
(Oakfield Apparatus) was taken from each plot and broken 
up into 0–15 and 15–30 cm soil depth increments. Three 
plot replicates were haphazardly selected for soil chemi-
cal and microbial community analyses. The soil was then 
homogenized in separate pools by depth and each pool 
was subsampled for microbial and chemical analyses. The 
biological subsamples were immediately flash frozen in 
an ethanol-dry ice bath and temporarily stored on dry ice 
before transfer to long-term storage at −80°C. Before soil 
processing, a small subsample was separated and massed 
before being dried at 105°C for 48 h and massed again for 
volumetric soil moisture content (Figure S4). To deter-
mine bulk soil total nitrogen (TN) and soil organic carbon 
(SOC), samples were immediately transported back to the 
lab and oven-dried at 65°C for at least 24 h, passed through 
a 2 mm sieve, and milled for 12 h in stainless steel jars on a 

F I G U R E  1   Cyanobacterial culturing 
systems in the Montana State University 
Plant Growth Center greenhouse: 
200 L raceway ponds (left) and 50 L 
photobioreactors (right)
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slow rolling tumbler. Samples were prepared in duplicate 
as SOC quantification required acidification of the soil 
using 1 and 2 M HCl to remove the inorganic C fraction. 
After drying for 48 h, %C and %N were determined using 
a Costech ESC 4010 elemental analyzer. Duplicates were 
run for ~10% of all samples to ensure analytical precision. 
Inorganic nitrogen (NO3

−-N and NH4
+-N) was processed 

within 12 h of soil collection by using ~10 g of the homog-
enized field moist soil core, with coarse/fine root material 
removed, and then extracted in 100 ml of 2 M KCl by shak-
ing at 200 RPM for 30 min. Following shaking, the sam-
ples were filtered through Whatman grade-2 filter paper 
and frozen until analysis. We determined extractant con-
centrations of NO3

−-N and NH4
+-N colorimetrically using 

an automated flow injection system (Lachat QuickChem 
8500, Hach Company). NH4

+-N was determined using the 
indophenol method while NO3

−-N was determined using 
a cadmium column reduction and coupled colorimetry. 
Soil pH was measured in 2:1 deionized water to soil solu-
tion using a glass electrode (Mettler Toledo).

2.4  |  DNA extraction, 
amplification, and sequencing

To obtain high-resolution representation of the soil mi-
crobial community and its response to fertilization, we 
performed rRNA gene amplicon sequencing across three 
of the treatment replicates at three time points (n = 54). 
The selected cores were specifically paired with those 
used for inorganic-N extraction to directly link meas-
ures of the microbiome and N availability. Genomic 
DNA was extracted from 0.5 g frozen soil samples using 
the Fast DNA SPIN Kit for soil (MP Biomedicals) ac-
cording to the manufacturer's instructions. We tar-
geted the V4 region of the 16S rRNA gene using 
f515a and r806b (GTGYCAGCMGCCGCGGTAA and 
GGACTACVSGGGTATCTAAT, respectively) from the 
Earth Microbiome Project (Thompson et al., 2017), and 
the D2 hypervariable region of the fungal LSU using LR22r 
and LR3 (Mueller et al., 2016). PCRs were carried out in 
20 μl volumes with each standard reaction mix contain-
ing 1 U Phusion high-fidelity polymerase (ThermoFisher 
Scientific), a final concentration of 1x Phusion HF reac-
tion buffer, 200  μM dNTPs, 0.5  μM each primer, 1  μM 
BSA, 1 mM MgCl, sterile molecular grade water, and 5 μl 
(10 ng) genomic DNA as a template. PCR conditions con-
sisted of initial denaturation at 98°C for 30 s, followed by 
22 cycles of 98°C for 30 s, 55°C for 30 s, 72°C for 45 s and 
a final extension at 72°C for 5 min. Barcoding was con-
ducted using the Illumina Nextera Indexing Kit D, with 
eight cycles of indexing PCR in 20 μl volumes using the 
same concentrations as PCR1 with 10 μl template DNA. 

PCR products were checked for quality and length in a 1% 
agarose gel and quantitated using the Quant-iT™ dsDNA 
Kit (Invitrogen) with a BioTek H2 plate reader. The two 
libraries were pooled at 4 nM and loaded onto an in-house 
Illumina MiSeq (Illumina). Reads were merged, trimmed, 
and dereplicated with USEARCH, and zero-radius op-
erational taxonomic units (ZOTUs) were identified with 
UNOISE3 (v.11.0.667; Edgar, 2010). Similar to amplicon 
sequence variants, UNOISE3 identifies ZOTUs by correct-
ing point errors and filtering out chimeric amplicons to ob-
tain accurate predictions of true biological sequences that 
are superior to utilizing a 97% identity cutoff (Callahan 
et al., 2017). Representative 16S and LSU ZOTUs were 
classified against their respective databases using the on-
line Bayesian classifier of the Ribosomal Database Project 
(Set 18 for bacteria, Set 11 for fungi; Wang et al., 2007). All 
reads classified to chloroplast (16S), or animalia, protozoa, 
or viridiplantae (LSU) were removed prior to analysis, 
and datasets were randomly subsampled according to the 
sample with the lowest read number for statistical analy-
sis using the R package vegan (Oksanen et al., 2019). The 
data are accessible at MG-RAST under accession num-
bers: mgm4916997.3 (LSU) and mgm4916998.3 (16S).

2.5  |  Phylogenetic trees

Reference phylogenies for the 16S and fungal LSU were 
constructed using full-length and near full-length se-
quences downloaded from GenBank. For fungi, we fo-
cused on sequences associated with the Assembling the 
Fungal Tree of Life project (Kauff et al., 2007). For bac-
teria and archaea, we used sequences from both isolates 
and metagenome assemblies to better cover the tree of life, 
including a subset of the Candidate Phylum Radiation. 
Reference sequences were aligned using mafft (Katoh 
& Standley, 2013; Stamatakis, 2006) and maximum like-
lihood trees were constructed using RAxML with the 
GTR  +  gamma model. ZOTUs were aligned and placed 
onto their respective reference phylogenies using pplacer 
(Matsen et al., 2010). Trees were visualized and annotated 
using the interactive tree of life (iTOL; Letunic & Bork, 
2019).

2.6  |  Data analysis

To test the effect of fertilizer treatment on soil chemistry 
by month, we used linear mixed models using fertilizer 
treatment and depth as fixed effects and plot replicates as 
a random effect (to account for the non-independence of 
replicate soil samples taken within a replicate) using the 
lme4 package (Bates et al., 2015). To assess whether there 
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were differences in soil chemistry based on fertilizer treat-
ment, we performed type III ANOVA; if fixed effects ac-
counted for variation, we compared post-hoc differences 
using pairwise Tukey comparisons using the emmeans 
package (Lenth et al., 2020). For NDVI analysis, we fit lin-
ear models with a fixed effect of treatment and fit one-way 
ANOVA’s. If treatment accounted for variation, we used 
Tukey's comparison to examine pairwise comparisons for 
fertilizer treatment effects. We report all soil chemistry 
and NDVI results as model mean values (±1 SE) and C:N 
as molar ratios. For soil dissolved inorganic nitrogen (DIN; 
NO3

−-N and NH4
+-N) analysis, we compared concentra-

tions at the individual soil depths (0–15 and 15–30 cm) as 
well as the mean aggregated total depth (0–30 cm). pH is 
reported as the mean of hydrogen ion concentrations fol-
lowed by a log10 back transformation with uncertainty re-
ported as a 95% confidence interval (CI). For NO3

−-N and 
NH4

+-N samples that were under the detection limit, we 
substituted a value that was ½ the lower detection limit. 
All data were assessed for influential points, homogene-
ity of variance, and normality. Log transformations were 
performed on data that did not fit the assumption of nor-
mality. Treatment differences were declared significant at 
p = .05 for NDVI and microbial community analyses and 
p = .10 for NO3

− and NH4
+ because of the inherent tempo-

ral and spatial variability of soil N transformations and the 
limited number of cores taken per plot (Moebius-Clune 
et al., 2008).

We calculated alpha diversity and beta diversity of 
the bacterial/archaeal and fungal communities using the 
phyloseq package (McMurdie & Holmes, 2013) with three 
separate methods for alpha diversity: ZOTU richness, 
Shannon's diversity index (Shannon, 1949), and Faith's 
Phylogenetic Diversity (PD; Faith, 1993), and unweighted 
UniFrac for phylogenetic-based beta diversity (Lozupone 
& Knight, 2005). We used PERMANOVA to test for treat-
ment, soil depth, and seasonal effects on community beta 
diversity (Anderson, 2017). To assess individual ZOTU 
responses to fertilizer treatment, response ratios were 

calculated by taking the difference between the read 
count for each ZOTU in a fertilized treatment and that of 
the control, non-fertilized field plots divided by the total 
number of reads for that ZOTU in both the treatment and 
control:

The response ratio calculation was permuted 999 
times for each ZOTU and averaged to acquire a final re-
sponse ratio. The output of Equation (1) is the responses 
on the scale from −1 to 1. Response classifications were 
determined by splitting the responses into quartiles. To 
investigate differences in response ratios on the scale 
of individual ZOTUs, the vegan package was utilized to 
conduct SIMPER analysis of ZOTUs driving the differ-
ences between the response ratios in treatment groups 
(Oksanen et al., 2019). The phylosig package was utilized 
to test Pagel's lambda and Abouheif's Cmean measures of 
phylogenetic signal (Keck et al., 2016). Prior to calcula-
tion, ZOTU tables were trimmed to include only ZOTUs 
with 10 or greater total reads to reduce erroneous classifi-
cations due to sampling error. We performed all analyses 
in R version 3.6.1 (R Core Team, 2019).

3   |   RESULTS

3.1  |  Barley and switchgrass growth

Fertilizer treatment influenced NDVI throughout the 
growing season (F10,952 = 5.37, p <  .0001). Compared to 
the control and urea treatments, mean daily NDVI val-
ues were higher in the CBF:Urea treatments during the 
second half of the 2018 growing season (Figure 2; Table 
S1). Barley plant biomass was similar between the urea 
and CBF:Urea treatments (p = .189) with 8806 ± 1362 and 
7288  ±  774  kg ha−1, respectively (Figure S5). However, 
both urea and CBF:Urea treatments significantly in-
creased aboveground plant biomass compared to the un-
fertilized control at 4170  ±  1143  kg ha−1 (p  =  .001 and 
p = .02, respectively).

3.2  |  Soil chemistry

Prior to experimental treatments, soils at the 0–15 cm soil 
depth had a pH of 8.0 (95% CI: 7.8–8.2) and low background 
SOC (1.00% ± 0.03) and TN (0.11% ± 0.002), and a C:N of 
(10.42 ± 0.45). For the 15–30 cm soil depth, we report a pH 
of 8.0 (95% CI: 7.8–8.4), SOC of (0.50% ± 0.03), and TN of 
(0.07% ± 0.002) and a C:N of (7.37 ± 0.45). SOC and C:N 

(1)ZOTUsumTreatment − ZOTUsumControl

ZOTUsumTreatment + ZOTUsumControl
.

F I G U R E  2   Box plots (median, 5th and 95th percentiles) of 
daily mean NDVI values (n = 980) aggregated by month across 
the three fertilizer treatments. The dashed line represents when 
the barley intercrop was harvested. Differences (p < .05) between 
aggregated daily means (Table S1) are denoted by letter signifiers
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ratios at the 0–15 cm soil depth declined by 16% and 10% 
across all treatments (F1,14 = 22.88, p = .0029, F1,14 = 6.02, 
p = .025) from pretreatment (April) to the end of the season 
(September). Total soil N and soil pH did not vary across fer-
tilizer treatments or through time (Tables S2 and S3).

Experimental treatments had two major effects on 
soil DIN across the cumulative growing season (May–
September). First, the CBF:Urea treatment resulted in 
overall higher mean concentrations of NH4

+-N compared 
to unfertilized controls (0–30  cm, p  =  .01), whereas the 
urea treatment concentrations were not different than the 
unfertilized controls (0–30 cm, p = .36). There was sugges-
tive evidence that this effect was stronger at the 0–15 cm 
depth (p  =  .09). Second, the urea treatments had higher 
mean concentrations of NO3

−-N at the 15–30  cm depth 
compared to the unfertilized controls (p = .05) while there 
was no difference between the CBF:Urea and control treat-
ments (p = .43).

Additionally, we found evidence for seasonal influence 
over fertilizer treatment effect on DIN (F4,139  =  13.95, 
p ≤  .0001; Figure 3). During the spring (May and June), 
fertilizer treatment affected the NO3

−-N concentrations 
at both soil depths (F2,54  =  12.3, p ≤  .001, F2,54  =  3.37, 
p  =  .071; Figure 3). Urea concentrations were greater 
than the unfertilized control (p =  .006, Figure 3) at the 
15–30 cm depth while there was no difference between 
the CBF:Urea and control treatments (p  =  .16, Figure 
3). In contrast, when just analyzing the spring months 
(May and June) NH4

+-N concentrations, we found no 
differences among fertilizer treatment or depths. During 
the late season (August and September), we report evi-
dence that fertilizer treatment affected DIN concentra-
tions (F2,53  =  5.11, p  =  .009). The CBF:Urea treatment 

had higher concentrations of NH4
+-N compared to the 

unfertilized controls (p =  .007; Figure 3) with marginal 
evidence of a difference between CBF:Urea and urea 
treatments (p  =  .12). Furthermore, CBF:Urea was the 
only treatment with a difference in NH4

+-N concentra-
tions between the two soil depths (p = .02), with higher 
concentrations at 0–15 cm. In contrast, when analyzing 
just the late season, we did not find any differences in 
NO3

−-N concentrations among fertilizer treatment or soil 
depths.

3.3  |  Microbial community 
characterization

In total, we sequenced the 16S and LSU communities 
from 54  soil samples throughout the growing season in 
2018. We obtained 17,449 ZOTUs with 18,073–175,266 
(mean 67,329) reads per sample for the 16S rRNA gene 
and 6,574 OTUs with 16,699–127,884 (mean 54,498) reads 
per sample of the LSU rRNA gene fungal subset. The 
most abundant bacterial phyla observed in this collective 
community included Proteobacteria (22%), Acidobacteria 
(17%), Actinobacteria (16%), and Bacteroidetes (12%; 
Figure 4a). Composition of the bacterial/archaeal commu-
nity at the phylum level was stable across time, depths, and 
treatments (Figure 4a). The fungal community comprised 
Ascomycota (38%), Basidiomycota (21%), Glomeromycota 
(21%), Chytridiomycota (9.7%), Blastocladiomycota 
(2.9%), and the remaining were unclassified fungi incer-
tae sedis (6.21%; Figure 4b). The Glomeromycota was the 
most dynamic phylum which increased in relative abun-
dance over time from 13% in April to 32% in September 

F I G U R E  3   Time series of extractable KCl NH4
+-N and NO3

−-N across the growing season at two soil depths, 0–15 cm (a, c), and 15–
30 cm (b, d) (Tables S4 and S5). Note differences in y-axis scales with lower concentrations of both NH4

+-N and NO3
−-N at the 15–30 cm 

depth
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while the Ascomycota decreased from 44% to 30% in this 
timeframe. In addition, Glomeromycota had a greater rel-
ative abundance in the deeper soil in general (30% vs. 15%) 
and was also slightly greater in the urea-treated plots than 
in the CBF:Urea and control plots (25% vs. 18% and 22%, 
respectively).

3.4  |  Cyanobacterial response to 
fertilizer treatment

Cyanobacteria were rare, averaging only 0.07% of the 
total community over the entire season. At the genus 
level, the cyanobacteria were dominated by Microcoleus 
sp. and Nodosilinea sp., and BLASTn of these ZOTUs 

indicated that Microcoleus vaginatus was the primary 
species present (Figure 5). The CBF species Anabaena 
cylindrica was not detected in any field plots prior to 
application and was only detected in CBF:Urea plots in 
July.

3.5  |  Bacterial/archaeal response to 
fertilizer treatment

As shown in Figure 6, alpha diversity of the bacterial/
archaeal community had similar trends among diversity 
metrics with no strong evidence for differences by treat-
ment, time, or soil depth except for phylogenetic diversity 
(Figure 6a,b). There was strong evidence of a seasonal 
shift in phylogenetic alpha diversity with an increase from 
April to July with community mean branch lengths of 
802 ± 18 and 875 ± 16 (SE), respectively (F(2,48) = 5.41, 
p = .008; Figure 6b). September PD was similar July PD 
with a mean branch length of 853 ± 14. CBF:Urea plots 
trended toward greater alpha diversity although there was 
high variability between plots. The beta diversity of the 
bacterial/archaeal community indicated a strong sepa-
ration by soil depth (F(2,48)  =  3.49, p  =  .003) but not by 
treatment (p = .939) or time (p = .088; Figure S6a, Table 
S6), suggesting that distinct communities were present at 
each soil depth, but the respective levels of diversity were 
similar.

Response ratios of the changes in relative abundance of 
ZOTUs across the phylogenetic tree indicated that bacteria 
generally had neutral responses across the phylogenetic 
tree (Figure 7a). However, Pagel's λ indicated a significant 
phylogenetic signal in the bacterial/archaeal (λ  =  0.23, 
p = 2.60e−101) and confirmed with Abouheif's Cmean (Table 
S7) meaning that response ratios of closely related ZOTUs 
were more similar to each other than would be expected 
under random trait distribution. Density plots of response 
ratios confirmed that the bacterial/archaeal community 
had primarily neutral to weak responses (Figure 7a insert) 
and that the differences in responses between the two 
fertilizer treatments were slight. However, the CBF:Urea 
treatment had slightly more strong negative and weak-
to-moderately strong positive responses than the urea 
treatment while the urea treatment had more neutral re-
sponses. Through our SIMPER analysis, we identified 12 
ZOTUs driving the differences in response ratios between 
the urea and CBF:Urea bacterial/archaeal community 
(Table S8; p  <  .001). The four most influential ZOTUs 
contributing to were classified to Planctomycetaceae 
and two Actinobacterial families, Micromonosporaceae 
and Acidimicobiaceae while the others also included 
Proteobacteria, Candidatus Uhrbacteria, Acidobacteria, 
Tenericutes, Abditibacteriota, and Bacteroidetes.

F I G U R E  4   Relative abundance at phylum level of (a) 
bacterial/archaeal and (b) fungal community phyla by treatment, 
soil depth, and time

F I G U R E  5   Relative abundance of cyanobacterial genera 
across time, treatments, and soil depth
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3.6  |  Fungal response to 
fertilizer treatment

Similar to the findings for the archaea/bacteria, we also 
observed also high variability in the alpha diversity of the 
fungal community with weak evidence for a difference 
between treatments regardless of the diversity metric. 
However, there was evidence for a difference in taxo-
nomic richness over time (F(2,48) = 5.59, p = .007; Figure 
6c). The number of fungal ZOTUs was highest in April 
(274  ±  11), followed by September (250  ±  9) and July 
(225 ± 13). Like the bacteria, beta diversity of the fungal 
community indicated a strong separation by depth but 
not by treatment or time (Figure S6b). Through SIMPER 
analysis, we identified 15 ZOTUs driving the difference 
between the urea and CBF:Urea fungal communities, 
which appeared to be primarily driven by arbuscular my-
corrhizal fungi (AMF). The four most influential ZOTUs 
driving 76% of the difference between the two commu-
nities all belonged to the Glomeromycota, with the urea 
treatment having greater abundance than the CBF:Urea 
treatment (Table S9). The remaining ZOTUs were clas-
sified as Eurotiomycetes, Monoblepharidomycetes, 
Agaricomycetes, Pezizomycetes, Sordariomycetes, and 
Zygomycota incertae sedis. However, the two communi-
ties were found to be 74% different overall, with individual 
ZOTUs making up at most 0.07% of this difference.

In contrast to the bacterial/archaeal community, fungi 
exhibited polarized responses to fertilization with primar-
ily strong positive or negative responses from either urea 
or CBF:Urea treatments compared to the non-fertilized 
control (Figure 7b). Phylogenetic signal was also detected 
in the fungal community (λ = 0.621, p = 9.9e−37), which 
was confirmed with Abouheif's Cmean (Table S7) suggest-
ing that, albeit weakly, response ratios of closely related 
ZOTUs were more similar to each other than would be 
expected under random trait distribution. The fungal 
community was polarized with primarily strong positive 
or strong negative responses and confirmed the similarity 
between the two treatments (Figure 7b insert). In contrast 
to the bacterial/archaeal community, the urea treatment 
had slightly more strong negative and strong positive re-
sponses in the fungal community than the CBF:Urea 
treatment and the CBF:Urea treatment had a greater fre-
quency of moderate-to-neutral responses.

4   |   DISCUSSION

Maintaining crop productivity while reducing negative 
environmental impacts is critical to increasing the sustain-
ability of agricultural practices. Perennial cropping sys-
tems may play an important role in future sustainability 

initiatives, but their implementation in dryland agricul-
ture is limited and as a result the impacts on soil C and 
N dynamics are unclear (Wang et al., 2015). In addition, 
understanding the complexities of how the soil microbi-
ome effects ecosystem function and contributes to soil 
health is currently a top research priority in the field of 
microbial ecology (Bender et al., 2016; Fierer et al., 2007; 
Mendes et al., 2013). Furthermore, field experiments and 
data demonstrating the effects of algal biofertilizers on the 
structure and functioning of microbial communities in ag-
ricultural systems are scarce. Therefore, this study aimed 
to contribute to these knowledge gaps by evaluating the 
effects of CBF supplementation on switchgrass stand es-
tablishment and to characterize the initial soil microbial 
community and N availability.

4.1  |  Fertilizer effects on plant 
productivity

Supplementing 50% of the synthetic fertilizer application 
with CBF compared to 100% urea application resulted in 
similar barley biomass and provided field evidence for 
sustained increases in late season NDVI for an establish-
ing perennial switchgrass crop (Figure 2). Similarly, in a 
study with potted rice, a combination of Nostoc sp. CBF 
with a half-dose of synthetic fertilizer resulted in the high-
est yield of rice grain compared to CBF or synthetic fer-
tilizer alone (Chittapun et al., 2018). It is likely that by 
combining synthetic and biofertilizers, plants can take 
advantage of readily available synthetic N then utilize the 

F I G U R E  6   Alpha diversity of bacterial/archeal (a, b) and 
fungal (c, d) communities by treatment and time. Two measures of 
alpha diversity, #OTUs (A, C), and phylogenetic diversity (mean 
branch length), (b, d). Error bars represent standard error (SE) 
from the mean (n = 6). Statistics compare diversity between time 
points based on Tukey–Kramer multiple comparison tests. *p < .05 
and **p < .01; ns, non-significant
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more slowly mineralized biofertilizer biomass throughout 
the growing season (Coppens et al., 2016; Kubheka et al., 
2020).

4.2  |  N and C responses to fertilization

Studies carried out with various CBF species have often 
shown that CBF can maintain or improve upon crop 
growth compared to synthetic fertilizers with additional 
benefits to soil quality including increased nutrient 
availability longer than synthetic fertilizers (Manjunath 
et al., 2016; Prasanna et al., 2012). We observed sig-
nificantly higher late-season NH4

+-N concentrations 
in shallow soil across the CBF:Urea plots compared to 
the urea fertilized plots or the non-fertilized controls 
in August (Figure 3). Furthermore, Anabaena CBF 
was detectable in July but not in September (Figure 5), 
which when considered with the increased soil NH4

+ in 
the CBF:Urea plots, suggesting that the algal biomass 
was mineralized into available N over that time period, 
as observed by Coppens et al. (2016). This highlights 
the potential for biofertilizer supplements to extend N 

availability well into the late growing season and sup-
port a more closed N cycle in comparison to the conven-
tional N application via urea pellets. We also observed 
higher levels of NO3

−-N in the urea-only treatment at 
the 15–30 cm soil depth across the entire growing sea-
son, and especially in the early season (Figure 3). This 
is noteworthy as NO3

−-N is a highly soluble and mobile 
form of N that, at this soil depth and early stage in stand 
development, is highly susceptible to eventual ground-
water loss. We did not expect to see shifts in bulk soil 
chemistry after one growing season (Schrumpf et al., 
2011); however, the ubiquitous decline in soil SOC 
across all treatments (Table S2) is an important obser-
vation in regards to potential ecosystem consequences 
(e.g., decrease in SOC) during the establishment of 
switchgrass as a bioenergy crop in the UMRB. However, 
this observation was made over a single growing season 
with a limited sample size of soil cores. Detecting SOC 
is notoriously difficult because of spatial heterogeneity 
(Conant & Paustian, 2002), and will require further in-
vestigation with a specific sampling design before con-
clusions can be drawn about a potential crop-induced 
mechanism for SOC loss.

F I G U R E  7   Phylogenetic trees of (a) 
bacteria and archaea (16S) and (b) fungal 
(LSU) communities colored by phylum. 
Response ratios are represented by colored 
circles around the trees. The inner circle 
represents the Urea–Control comparison 
while the outer circle represents the 
CBF:Urea–Control comparison. Darker 
colors indicate stronger responses with 
shades of green indicating positive 
responses (i.e., present in fertilized plots 
but not present in non-fertilized plots), 
likewise negative responses are in shades 
of purple. Neutral responses are in white. 
Triangles indicate ZOTUs identified by 
SIMPER analysis. Insets are histograms of 
the response ratio comparisons for each 
community
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4.3  |  Microbial response to fertilization

While overall diversity was minimally affected by treat-
ment in either the bacterial/archaeal or fungal communi-
ties, the response ratio analysis across the phylogenetic 
tree revealed finer-scale responses within each commu-
nity. Specifically, as shown in Figure 7, the fungal com-
munity was polarized with the majority of the identified 
ZOTUs falling under strong positive or strong negative 
response classifications while bacterial/archaeal re-
sponses were centered around neutral. The lack of re-
sponse in the bacterial community contradicts several 
long-term studies that reported opposite findings (Ai 
et al., 2018; Marschner et al., 2003), but this is potentially 
due to the lack of soil chemical changes since bacteria 
tend to be more sensitive to changes in abiotic factors 
such as pH (Strickland & Rousk, 2010). We identified sev-
eral ZOTUs driving small differences between the urea 
and CBF:Urea treatments which primarily belonged to 
the Planctomycetes, Actinobacteria, and Proteobacteria 
phyla. While different Planctomycetes ZOTUs were en-
riched in either the urea or CBF:Urea treatments, the 
Actinobacteria and Proteobacteria ZOTUs were enriched 
only in the urea treatments. Long-term N fertilization 
has been linked to increases in the relative abundances 
of Actinobacteria and Proteobacteria, which has been ex-
plained by their generally copiotrophic life strategies (Dai 
et al., 2018; Horton et al., 2017). In addition, members of 
the Actinobacteria, Proteobacteria, and Planctomycetes 
have all been identified as potential indicators of changes 
in pH and C:N ratios (Hermans et al., 2017) which may 
suggest more microscale differences in soil chemical 
conditions than we were unable to detect. Furthermore, 
the high level of heterogeneity within soil and the legacy 
effects of synthetic fertilization applied to these experi-
mental field plots may have contributed to a lack of broad 
community changes (Fan et al., 2019). Alternatively, 
since strong effects of synthetic fertilization on the micro-
bial community tend to occur at high levels of synthetic 
fertilizer application (>200 kg N ha−1; Fierer et al., 2012; 
Treseder, 2008), the moderate levels used in this study 
(100 kg N ha−1) may not be sufficient to lead to signifi-
cant shifts.

In the fungal community, the greater abundance of 
arbuscular mycorrhizal fungi (AMF) species in urea plots 
driving the difference between the urea and CBF:Urea 
treatments was surprising as the negative impact of fertil-
ization on AMF has been reported across multiple studies 
and systems (Chen et al., 2016; Ding et al., 2017; Egerton-
Warburton et al., 2007; Williams et al., 2017; Zhu et al., 
2018). Glomus sp. in particular have been reported to be 
sensitive to increasingly competitive environments such 
as those created by increased fertilization (Liu et al., 2015). 

However, the legacy of synthetic fertilization in these ex-
perimental plots may have conditioned these members of 
the community so that they were less able to utilize the 
organic source of N from the CBF. The hyphae of AMF are 
known to preferentially uptake NH4

+ and also have a lim-
ited enzymatic repertoire which results in a dependence 
on other saprobic members of the microbial community 
to mineralize complex organic matter (Jansa et al., 2019). 
We hypothesize that a decreased ability of the fungal com-
munity to utilize the N derived from CBF biomass may 
have contributed to the differences in late-season NH4

+ 
we observed. Long-term studies comparing organic ver-
sus synthetic fertilization have reported maintenance of 
or increases in fungal diversity in organic systems (Kamaa 
et al., 2011; Kazeeroni & Al-Sadi, 2016; Liu et al., 2020), 
with some exceptions attributed to indirect effects of 
plant biomass (Piazza et al., 2019). It is thus possible that 
there may be a lag period for some community members 
during the transition from previously synthetic to organic 
fertilization.

In both bacterial/archaeal and fungal communities, 
a weak phylogenetic signal was detected, indicating 
that closely related species tended to respond to fertil-
ization more similarly to each other than to randomly 
selected species across the phylogenetic tree. For exam-
ple, although we were unable to statistically detect any 
specific clades that responded strongly to either fertil-
ization treatment, it appeared that certain clades within 
the Firmicutes, Bacteroidetes, and Candidatus phyla re-
sponded coherently in a positive manner, while a num-
ber of archaea were negatively affected by fertilization 
of either type, warranting further investigation into the 
ecosystem functions performed by these groups. The rel-
atively short length of this study (one growing season) 
and the possible effects of “relic” DNA in the soil envi-
ronment on diversity measures emphasize the need for 
longer-term investigation of the effects of CBF on the soil 
microbial community (Carini et al., 2016). In addition, 
the contribution of the differences in abundances of in-
dividual ZOTUs to the overall community dissimilarities 
between treatments was exceedingly small. This suggests 
that even when supplementing CBF at a half-dose of 
synthetic fertilizer, the overriding effects of N addition 
on the soil microbial community are likely driven by the 
urea fertilization.

5   |   CONCLUSIONS

Supplementing 50% of urea fertilizer with CBF in 
an outdoor field study maintained statistically simi-
lar barley biomass and increased late-season NDVI of 
switchgrass, indicating potential for CBF efficacy in the 
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UMRB region. An increase in late-season N availability 
and evidence for mineralization of the CBF from July 
to September supported the potential benefits of the 
slower mineralization rate of CBF compared to urea. 
Supplementing urea fertilizer with CBF did not signifi-
cantly alter bacterial or fungal composition or diversity 
over the growing season; however, in-depth analysis of 
responses across the phylogenetic tree revealed the com-
munities had fine-scale dynamic responses. Regardless 
of fertilizer type, fungi had stronger responses to fer-
tilization than bacteria with polarized strong positive 
and negative responses, although phylogenetic signal 
was detected in both kingdoms suggesting cohesive 
responsiveness within specific clades. In addition, we 
identified specific ZOTUs that had strong responses to 
either fertilization treatment which suggests possible 
avenues of further ecosystem function investigations. 
Importantly, the neutral response of the microbial com-
munity to biofertilizer supplementation may be con-
strued as a lack of negative impact of the biofertilizer 
supplement on the soil microbial community, although 
longer-term studies need to be undertaken to determine 
if this is the case. Taken together, the results from this 
study are promising for the future implementation of 
perennial cropping with biofertilization in dryland ag-
ricultural systems.
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